Mathematic model paper for interview

ALGEBRIC FORMULA

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a b(a+b)+b^{3} \\
& (a-b)^{3}=a^{3}-3 a b(a-b)-b^{3} \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{2}-b^{2}=(a+b)(a-b)
\end{aligned}
$$

TYPES OF MATRICES

1) EQUAL MATRIX

Let A and B two matrices . then A is said to be equal to B , $A=B$ if and only if
The order of $A=$ the order of B
There corresponding entries are equal
EXAMPLES
$A=\left[\begin{array}{cc}1 & 3 \\ -4 & 2\end{array}\right] B=\left[\begin{array}{cc}1 & 2+1 \\ -4 & 4-2\end{array}\right]$

2) ROW MATRIX

A matrix is called a row matrix if has only one row
EXAMPLE:
$\mathrm{A}=\left[\begin{array}{lll}2 & -1 & 7\end{array}\right]$

3) COLUMN MATRIX

A matrix is called a column matrix if it has only one column

EXAMPLE

$$
A=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

4) SQUARE MATRIX

A matrix is called a square matrix number of rows is equal to its number columns
EXAMPLE

$$
A=\left[\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right] B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & -2 \\
0 & 1 & 3
\end{array}\right]
$$

5) NULL OR ZERO MATRIX

A matrix A is called null on zero matrix if each of its entries is 0
EXAMPLE
$\mathrm{A}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

6) TRANPOSE OF MATRIX

A matrix obtained by interchanging the row into columns or columns into rows of matrix is called transpose of a matrix it is denoted by A^{t}
EXAMPLE:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 0 \\
-1 & 4 & -2
\end{array}\right] \text { The } A^{t}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 4 \\
3 & 0 & -2
\end{array}\right]
$$

7) DIAGONAL MATRIX

A square matrix A is called diagonal matrix if at least any one of the entries of its main are different and others are should be zero diagonal is not zero EXAMPLE
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

8) SCALAR MATRIX

A diagonal matrix is called scalar is called scalar matrix , if all the main diagonal entries are same and others are zero.
EXAMPLE
$A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

9) IDENTITY MATRIX

A diagonal matrix is called identity (unit) matrix if all diagonal entries are 1 and it is denoted by I

LOGARITHIM :

Find the value of x , if $\log 7^{x}=2$
Find the value of a , if $\log _{a}{ }^{625}=4$
Find the value of y , if $\log _{10}{ }^{1000}=y$
SIMPLIFY
$\left(\frac{p^{a}}{p^{b}}\right)^{a+b+c} \times\left(\frac{p^{b}}{p^{c}}\right)^{b+c-a} \times\left(\frac{p^{c}}{p^{a}}\right)^{a+c-b}$
$\left(\frac{x^{p}}{x^{q}}\right)^{-q-p} \times\left(\frac{x^{m}}{x^{n}}\right)^{m+n} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l}$

TRIGONOMETRY:

The word trigonometry mean measurement of triangle.

1. TRIGONOMENTRIC RATIOS
$\operatorname{Sin} \theta=\frac{m \overline{B C}}{m \overline{A B}}=\frac{a}{c}$

$\operatorname{Cos} \theta=\frac{m \overline{A C}}{m \overline{A B}}=\frac{b}{c}$
$\tan \theta=\frac{m \overline{B C}}{m \overline{A C}}=\frac{a}{b}$

Cotangent $\theta=\frac{m \overline{A C}}{m \overline{B C}}=\frac{b}{a}$
$\operatorname{Secant} \theta=\frac{m \overline{A B}}{m \overline{A C}}=\frac{c}{b}$
Cosecant $\theta=\frac{m \overline{A B}}{m \overline{B C}}=\frac{c}{a}$

2. TRIGONOMATRIC IDENTITES

FACTORIZATION:

Expression type: $a c+b c+b d$
$3 x-3 a+x y-a y=\frac{c}{a}=\frac{c}{a}$
Expression type : $a^{2} \pm 2 a b+b^{2}$
$25 x^{2}+16+40 x$
Expression type : $a^{2}-b^{2}$

$$
a^{4}-b^{4} \quad a^{8}-b^{8}
$$

Expression type: $x^{2}+p x+q$
$x^{2}+5 x-36$
$x^{2}-7 x+12$
QUADRATIC EQUATION : $a x^{2}+b x+c=0$
Formula : $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Write each of the following numbers in scientific notation
30600
0.000058

NUMBER SYSTEMS:
NATURAL NUMBERS : The numbers 1,2,3------ which we use for the counting certain objects are called natural numbers or positive integers
$N=\{1,2,3----\}$
WHOLE NUMBERS : If we include 0 in the set natural numbers the resulting set of whole numbers
$W=\{0,1,2,3----\}$
INTEGERS :
The set of integers consists of positive integers , 0 and negative integers it is denoted by z
$Z=\{\cdots \cdots, 3,-2,-1,0,1,2,3\}$

RATIONAL NUMBERS

All numbers of the form $\frac{p}{q}$ where p and q are integers and q is not zero are called rational numbers
IRRATIONAL NUMBER
The numbers which cannot be expressed as a quotient of integers are called irrational number
EXAMPLES
The number $\sqrt{2}, \sqrt{3}, \sqrt{5}, \pi$ are irrational numbers

